Autor | Nachricht |
---|---|
General Name: Torsten Geschlecht: Fahrzeug: 96er EH6 Anmeldedatum: 03.07.2012 Beiträge: 4014 Wohnort: Kamp-Lintfort | zitieren Ich müsste lügen... Eg2 hat glaub ich 18mm Dc2 ist vermutlich dicker Und der Hardrace eigene ist 25.4mm dick |
▲ | pn |
Veteran Name: Tom Fahrzeug: GT-R + Mazdaspeed3 + delsol VTI Anmeldedatum: 13.07.2012 Beiträge: 572 Wohnort: Stendal | zitieren den "querlenker vorne oben" für 83€ brauchste nicht. das ist bei dem "querlenker SATZ vorne oben" für 146€ schon mit bei. "querlenker hinten oben" und "lenkslenkerbuchsen" haste vergessen. nimm da ruhig die lenkslenker von honda oder hardrace, von energy suspension würd ich abraten da fehlt die strebe zum verschrauben, da muss man die originale weiterverwenden und die wiederrum muss man erst aus dem hartgummi rausschneiden was ne ziehmlich quälerei ist. bei den stabis gibts nach baujahr, modell, auslieferungsland unterschiede. und da honda seine autos praktisch wie ein lego-system baut, passen die vom integra, civic, etc. auch unter den del sol. oder weist du genau was die vorbesitzer schon alles gemacht haben? da ist sicherer du misst das selber bei deinem nach. und wenn du die sachen nicht jetzt sofort und unbedingt auf der stelle brauchst. ende november ist immer black friday bei akr. da gibts nochmal 15% auf alles. würde dann pi mal daumen nochmal 130€ sparen. 1x bearbeitet |
▲ | pn |
Grand Master Name: G. Geschlecht: Anmeldedatum: 16.09.2007 Beiträge: 10487 | zitieren Frage in die runde die front ball joints gibt es in zwei ausführrungen was ist genau der unterschied und wie verhält sich der unterschied? |
▲ | pn |
Premium-Member Geschlecht: Anmeldedatum: 22.01.2007 Beiträge: 3069 Wohnort: Prenzlau | zitieren @Cleenz und andere Interessenten: Schreib mich doch einfach direkt mit euren Fragen an Dann können wir gern alles im Detail besprechen. Viele Artikel, die am 92-95 Civic EG und Integra passen, passen auch beim Del Sol. |
▲ | pn email |
Premium-Member Geschlecht: Fahrzeug: race track EJ1 Anmeldedatum: 31.01.2006 Beiträge: 1628 Wohnort: münchen | zitieren Du meinst die unteren Traggelenke? Die normalen sind einfach Ersatzteile. Die Extended (Hardrace 6386, oft auch Roll Center Adjusters genannt) sind da um die Fahrwerksgeometrie bei zu viel Tieferlegung wieder zu korrigieren, so dass das Fahrwerk wieder so arbeitet wie von Honda angedacht. Also das ist die höhere Schule der Fahrwerksoptimierung, die sind etwas für Leute die sich damit beschäftigen und auf der Rundstrecke weiter optimieren wollen |
▲ | pn |
Veteran Name: Tom Fahrzeug: GT-R + Mazdaspeed3 + delsol VTI Anmeldedatum: 13.07.2012 Beiträge: 572 Wohnort: Stendal | zitieren soviel werbung wie wir für dich gemacht haben müssten wir doch eigentlich schon dauerrabatt kriegen @cleenz lass dir von dem waschbären hier ein angebot machen, r-parts ist meist wirklich einer der günstigsten shop's. hab letzte woche auch bei der skunk2 aktion zugeschlagen und vorher bei zig shop's durchgerechet ob es da selbst am black friday nicht doch da günstiger wäre, aber nee. |
▲ | pn |
General Name: Torsten Geschlecht: Fahrzeug: 96er EH6 Anmeldedatum: 03.07.2012 Beiträge: 4014 Wohnort: Kamp-Lintfort | zitieren Ich hatte bei der Hardrace Aktion bestellt...preislich unschlagbar. Letzte Woche wieder und bald auch wieder. 1x bearbeitet |
▲ | pn |
Elite Name: Chris Geschlecht: Fahrzeug: EG3 R.I.P. , EJ9 Anmeldedatum: 06.01.2010 Beiträge: 2324 Wohnort: Hannover | zitieren Wie der Name schon sagt, Roll Center Adjusters, geht es um die Korrektur des sog. Rollzentrums. Dieses ist eine allgemein bekannte Größen bei der Fahrwerk-Optimierung. Allerdings gibt es erschreckenderweise dazu kaum Informationen im Internet, auf die ich verweisen könnte. Wahrscheinlich interessiert es einfach die Masse der Leute nicht, da wie schon richtig geschrieben, es hier eher um den professionellen Rennsport als um eine Straßen-optimierung geht. Aber von der Theorie eigentlich ganz nett zu wissen, wobei hierzu auch wieder das Gesamte Thema "Fahrwerk" verstanden sein muss um mit diesem Teil-Bereich wirklich was anfangen zu können. |
▲ | pn |
Premium-Member Geschlecht: Anmeldedatum: 22.01.2007 Beiträge: 3069 Wohnort: Prenzlau | zitieren Das ist ein Zitat von Megan Racing (http://www.meganracing.com/faq/). Vielleicht hilft das zum Verständnis, obwohl die Bilder allein schon viel erklären. Now that we are fully aware of the suspension handling benefits of adding roll center adjustoes to your lowered vehicle, there are a few caveats to make note of that will determine the correct type of roll center adjuster for your particular application. A few notes about roll center adjusters that are particularly important to consider when choosing roll center adjusters for your vehicle. The "roll center" and "instantaneous center" are determined by lines drawn through the suspension pick up points. These "pick up points" are determined by the pivot point in the suspension layout. For example, for McPherson strut suspensions, where camber plates are utilized most of the time, the pillow ball mount where the top of the strut would pivot would be the top pick up point, and the lower pick up point would be the pivot point down below. It is critical to take note of where the original pivot point is in the original ball-joint before purchasing the aftermarket roll center adjusters. There are certain differences between aftermarket roll center adjusters that determine if they actually make a difference, or if they are only lowering the angle of the lower control arm-- which visually does make a change, but if it changes the roll center or not would be an entirely different story. Take a look at this picture and notice two different kinds of roll center adjusters where the pivot point (the actual ball joint) is relocated and spaced out or if the ball joint remains in the original location and the stud is actually lengthened: This is not to say V.1 or V.2 is necessarily wrong, it entirely depends on the application. Some applications have the stud pointed down towards the ground and in other applications, the stud is pointed upwards. This is critical in determining the proper roll center adjuster for your application. Take note of the McPherson strut layout on this following photo of a DC5: Notice that the pivot point is effectively lowered by spacing down the ball joint-- the stud is not lengthened, though the portion of the ball joint that is pressed into the knuckle is spaced out to lower the pivot point/ball joint to effectively adjust the roll center height by lowering the pivot point. In other words, when the stud of the ball joint is facing downward like in the above photo, the ball joint itself needs to be spaced out, to bring the pivot point lower to correct roll center. If the stud of the ball joint is pointed upwards, such is the case with the Nissan 240SX application, the stud portion of the ball joint needs to be elongated to bring the pivot point lower to effectively bring the pivot point lower to correct roll center. It is imperatively critical to distinguish these differences before making your order for roll center adjustors, as using the correct style of roll center adjusters would determine the effectiveness of your new modification. Furthermore, if the above photos still leave you confused and in the dark about what exactly these roll center adjusters can do for your handling, here is an explanation from an old R/C website: Predicting how a car will react when forces are applied at the tires is not easy. The force can be absorbed, split, converted into a torque... by all sorts of suspension components. To avoid all of this you can try to find the roll center of your car and try to predict the reaction of the car from there. A roll center is an imaginary point in space, look at it as the virtual hinge your car hinges around when its chassis rolls in a corner. It's as if the suspension components force the chassis to pivot around this point in space. Let's look at the theory behind it first. The theorem of Kennedy tells us that if three objects are hinged together, there are at most three poles of movement, and they are always collinear, i.e. they are always on one line. To understand what a pole really is, consider the analogy with the poles of the earth: as earth rotates, the poles stay where they are. In other words, the earth rotates around the imaginary axis that connects the two poles. Now this is a 3-dimensional analogy, in the case of the roll center we only need two dimensions at first. So a pole of an object (or a group of objects) is like the center point of a circle it describes. If we look at the suspension of a typical R/C car, with a lower A-arm and an upper link, we see a bunch of objects that are all hinged together. These objects include the chassis, the upper link, the A-arm, and the hub. For now we consider the hub, the axle and the wheel as one unit. First, let's look at the chassis, the upper link and the hub. They are hinged together, so the theorem of Kennedy applies. The pole of the upper link and the hub is the ball joint that connects them, because they both hinge around it. The pole of the upper link and the chassis is also the ball joint that connects them. So if we now look at the chassis, the upper link and the hub, we have already found two of the three poles, so if there is a third one, it should be on the imaginary line that connects the other two. That line is drawn in red on the next drawing. The same applies to the bottom half of the suspension system, the pole of the lower A-arm and the hub is the outer hinge pin, the pole of the A-arm and the chassis is the inner hinge pin, so if there is a third pole it should be on the line that connects the other two. That line is also drawn in red . If your car uses ball links instead of hinge pins, the axis through the centers of the two balls makes up a virtual hinge pin. If the two red lines intersect, the pole of the hub/wheel and the chassis is the intersection point I . Point I is sometimes referred to as 'virtual pivot', or as 'instantaneous center'. This pole can give us information about how the suspension moves. The distance from point I to the centerline of the tire is sometimes referred to as 'swing axle length' , it's as if the hub/wheel is attached to an imaginary swing axle which hinges around point I. Having that long swing axle would be equivalent to having the double wishbone-type suspension, but the actual construction would be very impractical. Nevertheless it serves as a good simplification. The swing axle length, together with the angle, determine the amount of camber change the wheel will experience during the compression of the suspension. A long swing axle length will cause very little camber change as the suspension is compressed, and a very short one will cause a lot. If the upper link and the A-arm are perfectly parallel to each other, the two red lines won't intersect, or, in other words, the intersection point I is infinitely far removed from the car. This isn't a problem though: just draw the green line (in the next drawing) parallel to the two red ones. The two red lines should always intersect on the side of the center of the car, if they intersect on the outside, camber change will be bizarre: it will go from negative to positive back to negative, which is not a good thing for the consistency of the traction. The wheel and the ground can also move relative to each other; let's assume the wheel can pivot around the point where it touches the ground, which is usually in the middle of the tire carcass. That point is the pole of the tire and the ground. As it is drawn, a problem might arise when the chassis rolls: the tires might also roll, and hence the contact point between the earth and the tire might shift, especially with square-carcass tires that don't flex much. Now we can apply the theorem of Kennedy again: the ground, the wheel and the chassis are hinged together, we have already found the pole of the wheel and the ground, and the pole of the wheel and the chassis. If the pole of the ground and the chassis exists, it should be somewhere on the line that connects the other two poles, drawn in green in the next drawing. The same procedure can be followed for the other half of the suspension, as in the picture below. Again a green line will be found the pole of the ground and the chassis should be on. The intersection point of the two green lines is the pole of the ground and the chassis. (Circled in purple) That point(purple), the pole of the chassis and the ground is also called the roll center of the chassis. It gives us information about how the chassis moves in relation to the ground. Theoretically, the ground could rotate around it while the chassis would sit still, but usually it's the other way around; the chassis rotates around it while the ground sits still. The roll center is also the only point in space where a force could be applied to the chassis that wouldn't make it roll. The roll center will move when the suspension is compressed or lifted, that's why it's actually an instantaneous roll center. It moves because the suspension components don't move in perfect circles relative to each other, most of the paths of motion are more random. Luckily every path can be described as an infinite series of infinitely small circle segments. So it doesn't really matter the chassis doesn't roll in a perfect circular motion, just look at it as rolling in a circle around a center point that moves around all the time. If you want to determine the location of the roll center of your car, you can either 'eyeball' it by imagining the lines and intersection points, or you can get a really big sheet of paper and make a scale drawing of your car's suspension system. Now that we know where the roll center (RC) is located, let's look at how it influences the handling of the car. Imagine a car, driving in a circle with a constant radius, at a constant speed. An inertial force is pulling the car away from the center point, but because the car is dynamically balanced, there should be a force equal but opposite, pulling the car towards the center point. This force is provided by the adhesion of the tires. In principle, the inertia force works on all the different masses of the car, in every point, but by determining the center of gravity (CG) it's possible to replace all of the inertia forces by one big force working in the CG. It's as if the total mass of the car is packed into one point in space, the CG. If the CG is determined correctly, both conditions should be perfectly equivalent. The forces generated by the tires can be combined to one force, working in the car's roll center. Viewed from the back of the car, it looks like this: Two equal, but opposite forces, not working in the same point generate a torque equal to the size of the two forces multiplied by the distance between them. So the bigger that distance, the more efficiently a given pair of forces can generate a torque onto the chassis. That distance is called the roll moment. Note that it is always the vertical distance between the CG and the RC, since the forces always work horizontally. The torque generated by the two forces will make the chassis roll, around the roll center. This rolling motion will continue until the torque generated by the springs is equally big, only opposite. The dampers determine the speed at which this happens. Note that the roll torque is constant, well at least in this example where the turning radius is constant, but the torque supplied by the springs increases as the suspension is compressed. (See chapter 'springs') The difference between the two torque's, the resultant, is what makes the chassis lean. This resultant decreases because the torque supplied by the springs increases. So the speed at which chassis roll takes place always decreases, and it reaches zero when both torque's are equal. So for a given spring stiffness a big roll moment will make the chassis roll very far in the corners, and a small roll moment will make the chassis lean over less. So at any given time, the size of the roll moment is an indication of the size of the torque that causes the chassis to lean over while cornering. Now; a different problem arises; the location of the roll center changes when the suspension is compressed or extended, most of the time it moves in the same direction as the chassis, so if the suspension is compressed, the RC drops. This little animation shows how the height of the RC changes as the suspension is compressed. The height of the CG also changes a little, because the position of all of the unsprung mass changes relative to the chassis changes. So it's really hard to tell if the roll moment actually increases or decreases. Also, when the car corners, and the chassis leans over, the RC usually moves away from the chassis' centerline. Most R/C cars allow for the length and position of the upper link to be changed, and thus change the roll characteristics of the car. The following generalizations apply in most cases. An upper link that is parallel to the lower A-arm will make the RC sit very low when the car is at normal ride height, hence the initial body roll when entering a corner will be big. An upper link that is angled down will make the RC sit up higher, making the initial roll moment smaller, which makes that particular end of the car feel very aggressive entering the corner. A very long upper link will make that the roll moment stays more or less the same size when the chassis leans over; that end of the chassis will roll very deeply into the suspension travel. If not a lot of camber is used, this can make the tires slide because of excessive positive camber. A short upper link will make that the roll moment becomes a lot smaller when the chassis leans; the chassis won't roll very far. Until now, we've ignored the fact that there are two independent suspension systems in a car; there's one in the front and one in the rear. They both have their own roll center. Because the 'chassis' parts of both systems are connected by a rigid structure, the chassis, they will influence each other. Some people tend to forget this when they're making adjustments to their cars; they start adjusting one end without even considering what the other end is doing. Needless to say this can lead to anomalies in the car's handling. Having a very flexible chassis can hide those anomalies somewhat, but it's a far cry from a real solution. Anyway, the front part of the chassis is forced to hinge on the front RC, and the rear part is forced to hinge on the rear RC. If the chassis is rigid, it will be forced to hinge on the axis that connects both RCs (purple), that axis is called the roll axis. (red) The position of the roll axis relative to the cars CG tells a lot about the cornering power of the car; it predicts how the car will react when taking a turn. If the roll axis is angled down towards the front, the front will roll deeper into its suspension travel than the rear, giving the car a 'nose down' attitude in the corner. Because the rear roll moment is small relative to the front, the rear won't roll very far; hence the chassis will stay close to ride height. Note that with a car with very little negative suspension travel (droop) the chassis will drop more efficiently when the car leans over. With the nose of the car low and the back up high, a bigger percentage of the cars weight will be supported by the front tires, more tire pressure means more grip, so the car will have a lot of grip in the front, making it oversteer. A roll axis that is angled down towards the rear will promote understeer. Remember that the position of the roll centers is a dynamic condition , so the roll axis can actually tilt when the car goes through bumps or takes a corner, so it's possible for a car to understeer when entering the corner, when chassis roll is less pronounced, and oversteer in the middle of the corner because the front RC has dropped down a lot. This example illustrates how roll center characteristics can be used to tune a car to meet specific handling requests, from either the driver or the track. In general, you could say that the angle of the upper link relative to the A-arm determines where the roll center is with the chassis in its neutral position, and that the length of the upper link determines how much the height of the RC changes as the chassis rolls. A long, parallel link will locate the RC very low, and it will stay very low as the car corners. Hence, the car (well at least that end of the car) will roll a lot. An upper link that's angled down, and very short will locate the RC very high, and it will stay high as the chassis rolls. So the chassis will roll very little. Alternatively, a short, parallel link will make the car roll a lot at first, but as it rolls, the tendency will diminish. So it will roll very fast at first, but it will stop quickly. And a long link that's angled down will reduce the car's tendency to roll initially, but as the chassis rolls it won't make much of a difference anymore. In terms of car handling, this means that the end where the link is angled down the most (highest RC) has the most grip initially, when turning in, or exiting the corner, and that the end with the lowest RC when the chassis is rolled will have the most grip in the middle of the corner. So if you need a little more steering in the middle of the corners, lengthen the front upper link a little. (Be sure to adjust camber afterwards) If you'd like more aggressive turn-in, and more low-speed steering, either set the rear upper link at less of an angle, or increase the front link's angle a little. Now you might ask yourself: what's the best, a high RC or a low one? It all depends on the rest of the car and the track. One thing is for sure: on a bumpy track, the RC is better placed a little higher; it will prevent the car from rolling from side to side a lot as it takes the bumps, and it will also make it possible to use softer springs which allow the tires to stay in contact with the bumpy soil. On smooth tracks, you can use a very low RC, combined with stiff springs, to increase the car's responsiveness and jumping ability. |
▲ | pn email |
Gast | zitieren Mach mit!Wenn Dir die Beiträge zum Thread "Fahrwerksberatung Hardrace Teile" gefallen haben oder Du noch Fragen hast oder Ergänzungen machen möchtest, solltest Du Dich gleich bei uns anmelden:Registrierte Mitglieder genießen die folgenden Vorteile: ✔ kostenlose Mitgliedschaft ✔ keine Werbung ✔ direkter Austausch mit Gleichgesinnten ✔ neue Fragen stellen oder Diskussionen starten ✔ schnelle Hilfe bei Problemen ✔ Bilder und Videos hochladen ✔ und vieles mehr... |
▲ | |
Ähnliche Beiträge | Re: √ | Letzter Beitrag | |
---|---|---|---|
Hardrace Querlenker Moin,
Bekomme ich mit diesen wuerlenkern TÜV?
Gibt es da generell „regel“ vom tüv für?
[URL=http://https://www.akr-performance.de/p/hardrace-querlenker-satz-hinten-unten-gold-HR-7112-G]Hardrace... [Civic 96-00]von rtk89 | 2 1.675 | 25.11.2018, 07:42 EJ9_Driver | |
Hardrace Buchsen Weiß jemand wo man hier Hardracebuchsen herbekommt?
Ich brauch erstmal die großen für die hinteren Längslenker.
Und hat jemand Erfahrung damit?
ES Buchsen kommen nicht in... [Performance]von Texx | 1 516 | 08.12.2013, 18:32 Lori-DC2 | |
Hardrace civic 96-00 Hardrace vordere Oberarme für Civic 6G 96-00 zu verkaufen. Maximal 100 km mit einem Auto gefahren. Ich werde für Interessierte Fotos machen
Preis 240... [Autoteile]von kouba | 1 232 | 13.08.2024, 18:07 dealink | |
MB2 welches energysuspension/hardrace kit Hallo wollte mal fragen ob jemand an seinem M-civic alle buchsen durch ES/Hardrace ersetzt hat und weiß welches kit am besten bei den modellen passt. Gibts ja leider nicht konkret für die mb/ma/mc angeboten.
Gruß und danle im Vorraus... [Civic 96-00]von ticktricktrack0 | 0 139 | 11.03.2021, 09:57 ticktricktrack0 | |
Hardrace Motorlager Erfahrungen/ Probleme Hey Leute, :hi:
habe folgendes Problem das hintere Motorlager ist völlig hin der Motor bewegt nach vorne und hinten extrem stark.
Ok gut bei Honda mal angefragt wie zu erwarten ist es nicht lieferbar. Also habe ich mich nach einer alternative umgeschaut... Seite 2, 3 [Integra]von WerderCRX_ED9 | 28 2.361 | 17.11.2022, 05:25 EJ9_Driver | |
Hardrace Stoßdämpfer Buchse vorn unten Hallo,
ich will mir von Hardrace die vorderen unteren Stoßdämpfer Buchsen für meinen EJ6 bestellen. Da die vom Ej9 ja anders sind, weiß ich nicht welche ich nehmen kann/ soll. Sind die vom Eg... [Civic 96-00]von hirschjäger | 0 149 | 20.03.2014, 19:59 hirschjäger | |
Stabi Aufnahme Hardrace Querlenker hinten unten CRX ED9 Moinsen.
Habe mir für meinen 91er ED9 D16Z5 aufgrund defekter Buchsen an der Hinterachse komplette Querlenker im OEM Stil von Hardrace bestellt. Die Lenker sind nun geliefert und beim anhalten fiel mir auf, dass sie scheinbar keine Aufnahme für die... [CRX]von MoneED9 | 8 442 | 22.04.2021, 13:19 Scrat | |
Bietet jemand Teile an oder weiß wo man noch an CR-Z Teile kommt? Hi,
ich suche für meinen CR-Z Rückleuchten, da ich viele feine Kunststoffrisse oder Sprünge darin habe (keine Ahnung woher, waren plötzlich von einem auf den anderen Tag an beiden Leuchten :o ).
Nun ist der CR-Z ja kaum verbreitet und noch ziemlich neu,... [CRZ]von Jason Hawk | 0 207 | 06.06.2015, 17:49 Jason Hawk | |
Teile aus usa? Hy
Ich wollte mal wissen was ich beachten muß wenn ich mir teile in den usa bestelle?
Kommen da noch andere kosten auf mich zu außer
Shipping?
zb zoll oder so?
Und funktioniert das mit einem deutschen ebay account?
Es geht um dieses... Seite 2 [Civic 01-05]von icedox | 14 480 | 29.03.2010, 20:05 blue_bar_civic | |
EG3 Teile Hey leute ...
ich will die Teile von meinen Civic verkaufen ... schickt einfach anfragen per PN ... alles annre wird dann schon organisiert... [Civic 92-95]von pink-honda | 0 351 | 19.02.2008, 14:51 pink-honda |